Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Animals (Basel) ; 14(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338057

RESUMO

Training has a significant effect on the physiology of blood coagulation in humans and in horses. Several hemostatic changes have been reported after exercise in the horse but data available are inconclusive. The aim of this study was to investigate platelet activation and primary platelet-related hemostasis modifications in young never-trained Thoroughbreds in the first incremental training period in order to improve knowledge on this topic. Twenty-nine clinically healthy, untrained, 2-year-old Thoroughbred racehorses were followed during their incremental 4-month sprint exercise training. Blood collection was performed once a month, five times in total (T-30, T0, T30, T60, and T90). Platelet aggregation was measured by light transmission aggregometry in response to various agonists: adenosine diphosphate (ADP), collagen, and calcium ionophore A23187. Platelet function was evaluated using a platelet function analyzer (PFA-100®) using collagen/ADP and collagen/adrenaline cartridges. Nitrite-nitrate (NOx) plasma concentrations were measured via a colorimetric assay to assess in vivo nitric oxide bioavailability. Platelet activation was also investigated through gene expression analyses (selectin P-SELP, ectonucleotidase CD39-ENTPD1, prostaglandin I2 synthase-PTGIS, endothelial nitric oxide synthase 3-NOS3). Differences among the time points were analyzed and mean ± SEM were calculated. Significant modifications were identified compared with T-30, with an increase in platelet aggregation (collagen:32.6 ± 4.8 vs. 21.6 ± 4.9%; ADP: 35.5 ± 2.0 vs. 24.5 ± 3.1%; A23187: 30 ± 4.7 vs. 23.8 ± 4%) and a shorter closure time of C-ADP cartridges (75.6 ± 4.4 vs. 87.7 ± 3.4 s) that tended to return to the baseline value at T90. NOx concentrations in plasma significantly increased after 30 days of the training program compared with the baseline. The first long-term training period seems to induce platelet hyperactivity after 30 days in never-trained Thoroughbreds. Regular physical training reduces the negative effects of acute efforts on platelet activation.

3.
Animals (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396532

RESUMO

The dietary supplementation of olive oil by-products, including olive mill waste-water (OMWW) in animal diets, is a novel application that allows for their re-utilization and recycling and could potentially decrease the use of antibiotics, antimicrobial resistance risk in livestock species, and the occurrence of intestinal diseases. Salmonella serovar typhimurium is one of the most widespread intestinal pathogens in the world, causing enterocolitis in pigs. The aim of this study was to investigate the effect of an OMWW extract enriched in polyphenols (hydroxytyrosol and tyrosol) in the immune response of an intestinal porcine epithelial cell line (IPEC-J2) following S. typhimurium infection. Cells were pre-treated with OMWW-extract polyphenols (OMWW-EP, 0.35 and 1.4 µg) for 24 h and then infected with S. typhimurium for 1 h. We evaluated bacterial invasiveness and assayed IPEC-J2 gene expression with RT-qPCR and cytokine release with an ELISA test. The obtained results showed that OMWW-EP (1.4 µg) significantly reduced S. typhimurium invasiveness; 0.35 µg decreased the IPEC-J2 gene expression of IL1B, MYD88, DEFB1 and DEFB4A, while 1.4 µg down-regulated IL1B and DEFB4A and increased TGFB1. The cytokine content was unchanged in infected cells. This is the first study demonstrating the in vitro immunomodulatory and antimicrobial activity of OMWW extracts enriched in polyphenols, suggesting a protective role of OMWW polyphenols on the pig intestine and their potential application as feed supplements in farm animals such as pigs.

4.
Vet Pathol ; : 3009858231207025, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909398

RESUMO

Vulvo-vaginal epithelial tumors are uncommon in mares, and data on the epithelial-to-mesenchymal transition (EMT) and the tumor-immune microenvironment (TIME) are still lacking. This is a study investigating the equus caballus papillomavirus type 2 (EcPV2) infection state as well as the EMT process and the tumor microenvironment in vulvo-vaginal preneoplastic/ benign (8/22) or malignant (14/22) epithelial lesions in mares. To do this, histopathological, immunohistochemical, transcriptomic, in situ hybridization, and correlation analyses were carried out. Immunohistochemistry quantification showed that cytoplasmic E-cadherin and ß-catenin expression as well as nuclear ß-catenin expression were features of malignant lesions, while benign/preneoplastic lesions were mainly characterized by membranous E-cadherin and ß-catenin expression. Despite this, there were no differences between benign and malignant equine vulvo-vaginal lesions in the expression of downstream genes involved in the canonical and noncanonical wnt/ß-catenin pathways. In addition, malignant lesions were characterized by a lower number of cells with cytoplasmic cytokeratin expression as well as a slightly higher cytoplasmic vimentin immunolabeling. The TIME of malignant lesions was characterized by more numerous CD204+ M2-polarized macrophages. Altogether, our results support the hypothesis that some actors in TIME such as CD204+ M2-polarized macrophages may favor the EMT process in equine vulvo-vaginal malignant lesions providing new insights for future investigations in the field of equine EcPV2-induced genital neoplastic lesions.

5.
Sci Rep ; 13(1): 18786, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914824

RESUMO

With his bicentennial breeding history based on athletic performance, the Thoroughbred horse can be considered the equine sport breed. Although genomic and transcriptomic tools and knowledge are at the state of the art in equine species, the epigenome and its modifications in response to environmental stimuli, such as training, are less studied. One of the major epigenetic modifications is cytosine methylation at 5' of DNA molecules. This crucial biochemical modification directly mediates biological processes and, to some extent, determines the organisms' phenotypic plasticity. Exercise indeed affects the epigenomic state, both in humans and in horses. In this study, we highlight, with a genome-wide analysis of methylation, how the adaptation to training in the Thoroughbred can modify the methylation pattern throughout the genome. Twenty untrained horses, kept under the same environmental conditions and sprint training regimen, were recruited, collecting peripheral blood at the start of the training and after 30 and 90 days. Extracted leukocyte DNA was analyzed with the methylation content sensitive enzyme ddRAD (MCSeEd) technique for the first time applied to animal cells. Approximately one thousand differently methylated genomic regions (DMRs) and nearby genes were called, revealing that methylation changes can be found in a large part of the genome and, therefore, referable to the physiological adaptation to training. Functional analysis via GO enrichment was also performed. We observed significant differences in methylation patterns throughout the training stages: we hypothesize that the methylation profile of some genes can be affected early by training, while others require a more persistent stimulus.


Assuntos
Epigênese Genética , Esportes , Humanos , Cavalos/genética , Animais , Genoma , Metilação de DNA , DNA/metabolismo
6.
Equine Vet J ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395141

RESUMO

BACKGROUND: Vulvar squamous cell carcinoma (VSCC) has been recently associated with Equus caballus papillomavirus type 2 (EcPV2) infection. Still, few reports concerning this disease are present in the literature. OBJECTIVE: To describe a case of naturally occurring EcPV2-induced VSCC, by investigating tumour ability in undergoing the epithelial-to-mesenchymal transition (EMT). STUDY DESIGN: Case report. METHODS: A 13-year-old Haflinger mare was referred for a rapidly growing vulvar mass. After surgical excision, the mass was submitted to histopathology and molecular analysis. Histopathological diagnosis was consistent with a VSCC. Real-time qPCR, real-time reverse transcriptase (RT)-qPCR and RNAscope were carried out to detect EcPV2 infection and to evaluate E6/E7 oncogenes expression. To highlight the EMT, immunohistochemistry (IHC) was performed. Expression of EMT-related and innate immunity-related genes was investigated through RT-qPCR. RESULTS: Real-time qPCR, RT-qPCR and RNAscope confirmed EcPV2 DNA presence and expression of EcPV2 oncoproteins (E6 and E7) within the neoplastic vulvar lesion. IHC highlighted a cadherin switch together with the expression of the EMT-related transcription factor HIF1α. With RT-qPCR, significantly increased gene expression of EBI3 (45.0 ± 1.62, p < 0.01), CDH2 (2445.3 ± 0.39, p < 0.001), CXCL8 (288.7 ± 0.40, p < 0.001) and decreased gene expression of CDH1 (0.3 ± 0.57, p < 0.05), IL12A (0.04 ± 1.06, p < 0.01) and IL17 (0.2 ± 0.64, p < 0.05) were detected. MAIN LIMITATIONS: Lack of ability to generalise and danger of over-interpretation. CONCLUSION: The results obtained were suggestive of an EMT event occurring within the neoplastic lesion.

7.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446274

RESUMO

Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.


Assuntos
Colite Ulcerativa , Vesículas Extracelulares , Animais , Suínos , Citocinas/metabolismo , Metaloproteinase 9 da Matriz , Receptor 8 Toll-Like , Leite/metabolismo , Lipopolissacarídeos , Peróxido de Hidrogênio , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Colite Ulcerativa/metabolismo , Inflamação/patologia , Vesículas Extracelulares/metabolismo , Cabras , Mucosa Intestinal/metabolismo
9.
Front Immunol ; 14: 1209898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469517

RESUMO

Introduction: Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods: In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results: These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion: Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.


Assuntos
Vesículas Extracelulares , Leite , Animais , Suínos , Leite/metabolismo , Macrófagos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Cabras
10.
Vet Res Commun ; 47(3): 1615-1627, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37038001

RESUMO

Canine Soft Tissue Sarcoma (STS) cell line A-72 has been largely employed for antiviral and antiproliferative studies. However, there are few information on their characteristics. Our aim was to evaluate A-72 expression level of genes and proteins involved in the innate immune response and cell cycle, their ability to respond to infective stressors and their possible use as a cellular model for anti-cancer studies in human and animal medicine. For this purpose, we evaluated the basal expression of immune-related, cell cycle and DNA repair genes on this cell line and tumoral tissues. A-72 ability to respond to a wild-type strain of Salmonella typhimurium was assessed. S. typhimurium showed ability to penetrate A-72 causing pro-inflammatory response accompanied by a decrease of cell viability. IL10 and IL18 genes were not expressed in A-72 while CXCL8, NOS2, CXCR4 and PTEN were highly expressed in all samples and TP53 was slightly expressed, as shown in human STS. Our results outline the ability of A-72 to respond to a bacterial agent by modifying the expression of important genes involved in innate immune response and provide a useful model for in vitro evaluation of new therapeutic approaches that could be translated into the human oncology.


Assuntos
Doenças do Cão , Sarcoma , Animais , Cães , Humanos , Sarcoma/genética , Sarcoma/veterinária , Sarcoma/microbiologia , Linhagem Celular , Salmonella typhimurium/genética , Modelos Animais , Imunidade Inata/genética
11.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992359

RESUMO

Papillomaviruses (PVs) are small, non-enveloped viruses, ubiquitous across the animal kingdom. PVs induce diverse forms of infection, such as cutaneous papillomas, genital papillomatosis, and carcinomas. During a survey on the fertility status of a mare, a novel Equus caballus PV (EcPV) has been identified using Next Generation Sequencing, and it was further confirmed with genome-walking PCR and Sanger sequencing. The complete circular genome 7607 bp long shares 67% average percentage of identity with EcPV9, EcPV2, EcPV1, and EcPV6, justifying a new classification as Equus caballus PV 10 (EcPV10). All EcPV genes are conserved in EcPV10, and phylogenetic analysis indicates that EcPV10 is closely related to EcPV9 and EcPV2, genus Dyoiota 1. A preliminary EcPV10 genoprevalence study, carried out on 216 horses using Real Time PCRs, suggested a low incidence of this isolate (3.7%) compared to EcPVs of the same genus such as EcPV2 and EcPV9 in the same horse population. We hypothesize a transmission mechanism different from the one observed in the closely related EcPV9 and EcPV2 that particularly infect Thoroughbreds. This horse breed is usually submitted to natural mating, thus indicating a possible sexual diffusion. No differences were detected for breeds in terms of susceptibility to EcPV10. Further studies are needed to investigate the molecular mechanisms behind the host and EcPV10 infection to explain the reduced viral spread.


Assuntos
Doenças dos Cavalos , Papiloma , Infecções por Papillomavirus , Cavalos , Animais , Feminino , Filogenia , Papillomaviridae , Reação em Cadeia da Polimerase em Tempo Real , Papiloma/veterinária
12.
Biomedicines ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552020

RESUMO

Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.

13.
Animals (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496752

RESUMO

Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.

14.
Viruses ; 14(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36146856

RESUMO

Papillomavirus (PV) infections may be related to anogenital lesions and cancer development in humans and several other animal species. To date, 11 different PVs have been reported in horses. Among them, a newly described PV named Equus caballus Papillomavirus Type9 (EcPV9) was thus far only reported in the semen of a stallion with penile lesions in Australia. This study reports for the first time the presence of EcPV9 in asymptomatic Italian horses. From July 2020 to January 2022, genital brush samples were collected from 209 horses with no apparent signs of neoplastic disease and no PV-associated lesions, clinically examined at the Didactic Veterinary University Hospital (OVUD) of Perugia and at the Veterinary University Hospital (OVU) of Turin. Brushes were submitted to real-time PCR targeting the EcPV9-L1 region. The first amplification targeted a region of ~116 bp, followed by the amplification and sequencing of ~533 bp of the positive samples. EcPV9-L1 DNA was found in eleven horses (5.3%), all female and mainly English Thoroughbred. Co-infection with EcPV2-L1 was found in 7 out of the 11 EcPV9-L1 positive horses (63.6%). This study contributes to the description of the prevalence of exposure or infection of EcPVs in the horse population in Italy, for which data are still limited. In this regard, here we provide a phylogenetic analysis and the completely reconstructed viral genomes of two Italian EcPV type 9 isolates, as well as four EcPV type 2 obtained from co-infected animals.


Assuntos
Doenças dos Cavalos , Infecções por Papillomavirus , Animais , Feminino , Genoma Viral , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/genética , Cavalos , Humanos , Masculino , Papillomaviridae , Filogenia
15.
Res Vet Sci ; 152: 546-556, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36179548

RESUMO

Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.


Assuntos
Vesículas Extracelulares , Doenças das Cabras , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Doenças das Cabras/metabolismo , Cabras , Inflamação/veterinária , Inflamação/metabolismo , Interleucina-18 , Mucosa Intestinal , Leite/metabolismo , Receptor 7 Toll-Like/metabolismo , Doenças Inflamatórias Intestinais
16.
Viruses ; 14(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016317

RESUMO

Equine Papillomavirus 2 (EcPV2) is responsible for squamous cell carcinomas (eSCCs) of external genitalia of both male and female horses. However, few studies report the EcPV2 prevalence among healthy horses. Currently, the lack of these data does not permit identifying at-risk populations and, thus, developing screening protocols aimed at the early detection of the infection, as for humans. The aim of our study was to estimate the genoprevalence of EcPV2 in clinically healthy horses in Italy and to evaluate their innate immune response. For this purpose, penile and vulvar swabs of 234 healthy horses were collected through sampling with sterile cytobrushes. Nucleic acids were isolated and EcPV2-L1 presence (DNA) and gene expression (RNA) were checked by RT-qPCR. Our results showed EcPV2-L1 DNA presence in 30.3% of the samples and L1 expression in 48% of the positive samples. No statistically significant differences were found in genoprevalence in relation to sex, age, and origin, while, concerning breeds, the Thoroughbred had the highest risk of infection. Concerning specifically the mares, 40.2% of them resulted in being positive for EcPV2; our findings show a major positivity in pluriparous (p = 0.0111) and mares subjected to natural reproduction (p = 0.0037). Moreover, samples expressing L1 showed an increased expression of IL1B (p = 0.0139) and IL12p40 (p = 0.0133) and a decreased expression of RANKL (p = 0.0229) and TGFB (p = 0.0177). This finding suggests the presence of an effective immune response, which could explain the low incidence of SCCs in positive horses, despite a high EcPV2 genoprevalence (30%).


Assuntos
Carcinoma de Células Escamosas , Doenças dos Cavalos , Infecções por Papillomavirus , Animais , DNA Viral/análise , DNA Viral/genética , Feminino , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Masculino , Papillomaviridae , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/veterinária
17.
Biomedicines ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35327370

RESUMO

Extracellular vesicles (EVs) are lipid bilayer nano-dimensional spherical structures and act mainly as signaling mediators between cells, in particular modulating immunity and inflammation. Milk-derived EVs (mEVs) can have immunomodulatory and anti-inflammatory effects, and milk is one of the most promising food sources of EVs. In this context, this study aimed to evaluate bovine mEVs anti-inflammatory and immunomodulating effects on an in vitro co-culture (Caco-2 and THP-1) model of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release through ELISA. After establishing a pro-inflammatory environment due to IFN-γ and LPS stimuli, CXCL8, IL1B, TNFA, IL12A, IL23A, TGFB1, NOS2, and MMP9 were significantly up-regulated in inflamed Caco-2 compared to the basal co-culture. Moreover, IL-17, IL-1ß, IL-6, TNF-α release was increased in supernatants of THP-1. The mEV administration partially restored initial conditions with an effective anti-inflammatory activity. Indeed, a decrease in gene expression and protein production of most of the tested cytokines was detected, together with a significant gene expression decrease in MMP9 and the up-regulation of MUC2 and TJP1. These results showed a fundamental capability of mEVs to modulate inflammation and their potential beneficial effect on the intestinal mucosa.

18.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884564

RESUMO

Milk extracellular vesicles (mEVs) seem to be one of the main maternal messages delivery systems. Extracellular vesicles (EVs) are micro/nano-sized membrane-bound structures enclosing signaling molecules and thus acting as signal mediators between distant cells and/or tissues, exerting biological effects such as immune modulation and pro-regenerative activity. Milk is also a unique, scalable, and reliable source of EVs. Our aim was to characterize the RNA content of cow, donkey, and goat mEVs through transcriptomic analysis of mRNA and small RNA libraries. Over 10,000 transcripts and 2000 small RNAs were expressed in mEVs of each species. Among the most represented transcripts, 110 mRNAs were common between the species with cow acting as the most divergent. The most represented small RNA class was miRNA in all the species, with 10 shared miRNAs having high impact on the immune regulatory function. Functional analysis for the most abundant mRNAs shows epigenetic functions such as histone modification, telomere maintenance, and chromatin remodeling for cow; lipid catabolism, oxidative stress, and vitamin metabolism for donkey; and terms related to chemokine receptor interaction, leukocytes migration, and transcriptional regulation in response to stress for goat. For miRNA targets, shared terms emerged as the main functions for all the species: immunity modulation, protein synthesis, cellular cycle regulation, transmembrane exchanges, and ion channels. Moreover, donkey and goat showed additional terms related to epigenetic modification and DNA maintenance. Our results showed a potential mEVs immune regulatory purpose through their RNA cargo, although in vivo validation studies are necessary.


Assuntos
Anti-Inflamatórios/metabolismo , Vesículas Extracelulares/imunologia , Regulação da Expressão Gênica , Imunomodulação , Leite/imunologia , Transcriptoma , Animais , Bovinos , Equidae , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Cabras , MicroRNAs/genética , Leite/química , Leite/metabolismo
19.
Genes (Basel) ; 12(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946914

RESUMO

Physical exercise has been associated with the modulation of micro RNAs (miRNAs), actively released in body fluids and recognized as accurate biomarkers. The aim of this study was to measure serum miRNA profiles in 18 horses taking part in endurance competitions, which represents a good model to test metabolic responses to moderate intensity prolonged efforts. Serum levels of miRNAs of eight horses that were eliminated due to metabolic unbalance (Non Performer-NP) were compared to those of 10 horses that finished an endurance competition in excellent metabolic condition (Performer-P). Circulating miRNA (ci-miRNA) profiles in serum were analyzed through sequencing, and differential gene expression analysis was assessed comparing NP versus P groups. Target and pathway analysis revealed the up regulation of a set of miRNAs (of mir-211 mir-451, mir-106b, mir-15b, mir-101-1, mir-18a, mir-20a) involved in the modulation of myogenesis, cardiac and skeletal muscle remodeling, angiogenesis, ventricular contractility, and in the regulation of gene expression. Our preliminary data open new scenarios in the definition of metabolic adaptations to the establishment of efficient training programs and the validation of athletes' elimination from competitions.


Assuntos
Biomarcadores/metabolismo , MicroRNA Circulante/genética , Regulação da Expressão Gênica , Cavalos/fisiologia , Doenças Metabólicas/fisiopatologia , Condicionamento Físico Animal , Transcriptoma , Animais , Feminino , Masculino , Resistência Física , Projetos Piloto
20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638929

RESUMO

Equine penile squamous cell carcinoma (epSCC) is the most frequent tumor of the external male genitalia, representing 67.5% of equine genital cancers. epSCC is associated with papilloma virus (PV) infection and has been recently proposed as a model for human PV-induced squamous cell carcinomas. It has already been suggested that epSCC might undergo epithelial-to-mesenchymal transition (EMT). This work aims to investigate in detail this process and the possible role of PV oncoproteins in epSCC. For this purpose, 18 penile SCCs were retrospectively selected and tested for both EcPV2 presence and oncoproteins (EcPV2 E6 and EcPV2 E7) expression. Moreover, immunohistochemical EMT characterization was carried out by analyzing the main epithelial markers (E-cadherin, ß-catenin, and pan-cytokeratin AE3/AE1), the main mesenchymal markers (N-cadherin and vimentin), and the main EMT-related transcription factors (TWIST-1, ZEB-1). PCR analysis was positive for EcPV2 in 16 out of 18 samples. EMT was investigated in epSCC positive for EcPV2. The immunohistochemistry results suggested the presence of EMT processes in the neoplastic cells at the tumor invasive front. Moreover, the significant upregulation of RANKL, together with BCATN1, LEF1, and FOSL1 genes, might suggest a canonical Wnt pathway activation, similarly to what is reported in human penile squamous cell carcinomas.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal/genética , Doenças dos Cavalos/genética , Infecções por Papillomavirus/genética , Neoplasias Penianas/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/virologia , Cavalos/virologia , Humanos , Imuno-Histoquímica , Masculino , Papillomaviridae/fisiologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Neoplasias Penianas/metabolismo , Neoplasias Penianas/virologia , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...